35 research outputs found

    Parameter Identification of a Fed-Batch Cultivation of S. Cerevisiae using Genetic Algorithms

    Get PDF
    Fermentation processes as objects of modelling and high-quality control are characterized with interdependence and time-varying of process variables that lead to non-linear models with a very complex structure. This is why the conventional optimization methods cannot lead to a satisfied solution. As an alternative, genetic algorithms, like the stochastic global optimization method, can be applied to overcome these limitations. The application of genetic algorithms is a precondition for robustness and reaching of a global minimum that makes them eligible and more workable for parameter identification of fermentation models. Different types of genetic algorithms, namely simple, modified and multi-population ones, have been applied and compared for estimation of nonlinear dynamic model parameters of fed-batch cultivation of S. cerevisiae.* This work is partly supported by the National Science Fund Project MI – 1505/2005

    Tuning Genetic Algorithm Parameters to Improve Convergence Time

    Get PDF
    Fermentation processes by nature are complex, time-varying, and highly nonlinear. As dynamic systems their modeling and further high-quality control are a serious challenge. The conventional optimization methods cannot overcome the fermentation processes peculiarities and do not lead to a satisfying solution. As an alternative, genetic algorithms as a stochastic global optimization method can be applied. For the purpose of parameter identification of a fed-batch cultivation of S. cerevisiae altogether four kinds of simple and four kinds of multipopulation genetic algorithms have been considered. Each of them is characterized with a different sequence of implementation of main genetic operators, namely, selection, crossover, and mutation. The influence of the most important genetic algorithm parameters-generation gap, crossover, and mutation rates has-been investigated too. Among the considered genetic algorithm parameters, generation gap influences most significantly the algorithm convergence time, saving up to 40% of time without affecting the model accuracy

    Modelling of Functional States during Saccharomyces cerevisiae Fed-batch Cultivation

    Get PDF
    An implementation of functional state approach for modelling of yeast fed-batch cultivation is presented in this paper. Using of functional state modelling approach aims to overcome the main disadvantage of using global process model, namely complex model structure and big number of model parameters, which complicate the model simulation and parameter estimation. This approach has computational advantages, such as the possibility to use the estimated values from the previous state as starting values for estimation of parameters of a new state. The functional state modelling approach is applied here for fedbatch cultivation of Saccharomyces cerevisiae. Four functional states are recognised and parameter estimation of local models is presented as well

    DG-AMMOS: A New tool to generate 3D conformation of small molecules using Distance Geometry and Automated Molecular Mechanics Optimization for in silico Screening

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Discovery of new bioactive molecules that could enter drug discovery programs or that could serve as chemical probes is a very complex and costly endeavor. Structure-based and ligand-based <it>in silico </it>screening approaches are nowadays extensively used to complement experimental screening approaches in order to increase the effectiveness of the process and facilitating the screening of thousands or millions of small molecules against a biomolecular target. Both <it>in silico </it>screening methods require as input a suitable chemical compound collection and most often the 3D structure of the small molecules has to be generated since compounds are usually delivered in 1D SMILES, CANSMILES or in 2D SDF formats.</p> <p>Results</p> <p>Here, we describe the new open source program DG-AMMOS which allows the generation of the 3D conformation of small molecules using Distance Geometry and their energy minimization via Automated Molecular Mechanics Optimization. The program is validated on the Astex dataset, the ChemBridge Diversity database and on a number of small molecules with known crystal structures extracted from the Cambridge Structural Database. A comparison with the free program Balloon and the well-known commercial program Omega generating the 3D of small molecules is carried out. The results show that the new free program DG-AMMOS is a very efficient 3D structure generator engine.</p> <p>Conclusion</p> <p>DG-AMMOS provides fast, automated and reliable access to the generation of 3D conformation of small molecules and facilitates the preparation of a compound collection prior to high-throughput virtual screening computations. The validation of DG-AMMOS on several different datasets proves that generated structures are generally of equal quality or sometimes better than structures obtained by other tested methods.</p

    Implementation of Sliding Mode Controller with Boundary Layer for Saccharomyces cerevisiae Fed-batch Cultivation

    Get PDF
    An implementation of sliding mode control for yeast fed-batch cultivation is presented in this paper. Developed controller has been implemented on two real fed-batch cultivations of Saccharomyces cerevisiae. The controller successfully stabilizes the process and shows a very good performance at high input disturbances

    AMMOS: Automated Molecular Mechanics Optimization tool for in silico Screening

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Virtual or <it>in silico </it>ligand screening combined with other computational methods is one of the most promising methods to search for new lead compounds, thereby greatly assisting the drug discovery process. Despite considerable progresses made in virtual screening methodologies, available computer programs do not easily address problems such as: structural optimization of compounds in a screening library, receptor flexibility/induced-fit, and accurate prediction of protein-ligand interactions. It has been shown that structural optimization of chemical compounds and that post-docking optimization in multi-step structure-based virtual screening approaches help to further improve the overall efficiency of the methods. To address some of these points, we developed the program AMMOS for refining both, the 3D structures of the small molecules present in chemical libraries and the predicted receptor-ligand complexes through allowing partial to full atom flexibility through molecular mechanics optimization.</p> <p>Results</p> <p>The program AMMOS carries out an automatic procedure that allows for the structural refinement of compound collections and energy minimization of protein-ligand complexes using the open source program AMMP. The performance of our package was evaluated by comparing the structures of small chemical entities minimized by AMMOS with those minimized with the Tripos and MMFF94s force fields. Next, AMMOS was used for full flexible minimization of protein-ligands complexes obtained from a mutli-step virtual screening. Enrichment studies of the selected pre-docked complexes containing 60% of the initially added inhibitors were carried out with or without final AMMOS minimization on two protein targets having different binding pocket properties. AMMOS was able to improve the enrichment after the pre-docking stage with 40 to 60% of the initially added active compounds found in the top 3% to 5% of the entire compound collection.</p> <p>Conclusion</p> <p>The open source AMMOS program can be helpful in a broad range of <it>in silico </it>drug design studies such as optimization of small molecules or energy minimization of pre-docked protein-ligand complexes. Our enrichment study suggests that AMMOS, designed to minimize a large number of ligands pre-docked in a protein target, can successfully be applied in a final post-processing step and that it can take into account some receptor flexibility within the binding site area.</p

    Multiple model approach to modelling of Escherichia coli fed-batch cultivation extracellular production of bacterial phytase

    Get PDF
    The paper presents the implementation of multiple model approach to modelling of Escherichia coli BL21(DE3)pPhyt109 fed-batch cultivation processes for an extracellular production of bacterial phytase. Due to the complex metabolic pathways of microorganisms, the accurate modelling of bioprocesses is rather difficult. Multiple model approach is an alternative concept which helps in modelling and control of complex processes. The main idea is the development of a model based on simple submodels for the purposes of further high quality process control. The presented simulations of E. coli fed-batch cultivation show how the process could be divided into different functional states and how the model parameters could be obtained easily using genetic algorithms. The obtained results and model verification demonstrate the effectiveness of the applied concept of multiple model approach and of the proposed identification scheme. © 2007 by Pontificia Universidad Católica de Valparaíso

    Multiple model approach to modelling of Escherichia coli fed-batch cultivation extracellular production of bacterial phytase

    Get PDF
    The paper presents the implementation of multiple model approach to modelling of Escherichia coli BL21(DE3)pPhyt109 fed-batch cultivation processes for an extracellular production of bacterial phytase. Due to the complex metabolic pathways of microorganisms, the accurate modelling of bioprocesses is rather difficult. Multiple model approach is an alternative concept which helps in modelling and control of complex processes. The main idea is the development of a model based on simple submodels for the purposes of further high quality process control. The presented simulations of E. coli fed-batch cultivation show how the process could be divided into different functional states and how the model parameters could be obtained easily using genetic algorithms. The obtained results and model verification demonstrate the effectiveness of the applied concept of multiple model approach and of the proposed identification scheme

    A Comprehensive Evaluation of Sdox, a Promising H2S-Releasing Doxorubicin for the Treatment of Chemoresistant Tumors

    Get PDF
    Sdox is a hydrogen sulfide (H2S)-releasing doxorubicin effective in P-glycoprotein-overexpressing/doxorubicin-resistant tumor models and not cytotoxic, as the parental drug, in H9c2 cardiomyocytes. The aim of this study was the assessment of Sdox drug-like features and its absorption, distribution, metabolism, and excretion (ADME)/toxicity properties, by a multi- and transdisciplinary in silico, in vitro, and in vivo approach. Doxorubicin was used as the reference compound. The in silico profiling suggested that Sdox possesses higher lipophilicity and lower solubility compared to doxorubicin, and the off-targets prediction revealed relevant differences between Dox and Sdox towards several cancer targets, suggesting different toxicological profiles. In vitro data showed that Sdox is a substrate with lower affinity for P-glycoprotein, less hepatotoxic, and causes less oxidative damage than doxorubicin. Both anthracyclines inhibited CYP3A4, but not hERG currents. Unlike doxorubicin, the percentage of zebrafish live embryos at 72 hpf was not affected by Sdox treatment. In conclusion, these findings demonstrate that Sdox displays a more favorable drug-like ADME/toxicity profile than doxorubicin, different selectivity towards cancer targets, along with a greater preclinical efficacy in resistant tumors. Therefore, Sdox represents a prototype of innovative anthracyclines, worthy of further investigations in clinical settings

    How to Assess Different Algorithms Using Intuitionistic Fuzzy Logic

    No full text
    Intuitionistic fuzzy logic is the main tool in the recently developed step-wise “cross-evaluation” procedure that aims at the assessment of different optimization algorithms. In this investigation, the procedure previously applied to compare the effectiveness of two or three algorithms has been significantly upgraded to evaluate the performance of a set of four algorithms. For the first time, the procedure applied here has been tested in the evaluation of the effectiveness of genetic algorithms (GAs), which are proven as very promising and successful optimization techniques for solving hard non-linear optimization tasks. As a case study exemplified with the parameter identification of a S. cerevisiae fed-batch fermentation process model, the cross-evaluation procedure has been executed to compare four different types of GAs, and more specifically, multi-population genetic algorithms (MGAs), which differ in the order of application of the three genetic operators: Selection, crossover and mutation. The results obtained from the implementation of the upgraded intuitionistic fuzzy logic-based procedure for MGA performance assessment have been analyzed, and the standard MGA has been outlined as the fastest and most reliable one among the four investigated algorithms
    corecore